skip to main content


Search for: All records

Creators/Authors contains: "Smith, Simon E. T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The recently discovered stellar system Ursa Major III/UNIONS 1 (UMa3/U1) is the faintest known Milky Way satellite to date. With a stellar mass of165+6Mand a half-light radius of 3 ± 1 pc, it is either the darkest galaxy ever discovered or the faintest self-gravitating star cluster known to orbit the Galaxy. Its line-of-sight velocity dispersion suggests the presence of dark matter, although current measurements are inconclusive because of the unknown contribution to the dispersion of potential binary stars. We useN-body simulations to show that, if self-gravitating, the system could not survive in the Milky Way tidal field for much longer than a single orbit (roughly 0.4 Gyr), which strongly suggests that the system is stabilized by the presence of large amounts of dark matter. If UMa3/U1 formed at the center of a ∼109Mcuspy LCDM halo, its velocity dispersion would be predicted to be of order ∼1 km s−1. This is roughly consistent with the current estimate, which, neglecting binaries, placesσlosin the range 1–4 km s−1. Because of its dense cusp, such a halo should be able to survive the Milky Way tidal field, keeping UMa3/U1 relatively unscathed until the present time. This implies that UMa3/U1 is plausibly the faintest and densest dwarf galaxy satellite of the Milky Way, with important implications for alternative dark matter models and for the minimum halo mass threshold for luminous galaxy formation in the LCDM cosmology. Our results call for multi-epoch high-resolution spectroscopic follow-up to confirm the dark matter content of this extraordinary system.

     
    more » « less
  2. ABSTRACT

    Filamentary structures have been found nearly ubiquitously in molecular clouds and yet their formation and evolution is still poorly understood. We examine a segment of Taurus Molecular Cloud 1 (TMC-1) that appears as a single, narrow filament in continuum emission from dust. We use the Regularized Optimization for Hyper-Spectral Analysis (ROHSA), a Gaussian decomposition algorithm that enforces spatial coherence when fitting multiple velocity components simultaneously over a data cube. We analyse HC5N (9–8) line emission as part of the Green Bank Ammonia Survey and identify three velocity-coherent components with ROHSA. The two brightest components extend the length of the filament, while the third component is fainter and clumpier. The brightest component has a prominent transverse velocity gradient of 2.7 ± 0.1 km s−1 pc−1 that we show to be indicative of gravitationally induced inflow. In the second component, we identify regularly spaced emission peaks along its length. We show that the local minima between pairs of adjacent HC5N peaks line up closely with submillimetre continuum emission peaks, which we argue is evidence for fragmentation along the spine of TMC-1. While coherent velocity components have been described as separate physical structures in other star-forming filaments, we argue that the two bright components identified in HC5N emission in TMC-1 are tracing two layers in one filament: a lower density outer layer whose material is flowing under gravity towards the higher density inner layer of the filament.

     
    more » « less